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Abstract

Millions of people across the globe have been affected by coronavirus disease 2019 (COVID-19), which began in Wuhan,
China, and is caused by SARS-CoV-2. COVID-19 has a variety of clinical characteristics and triggers immune responses
required for the elimination of the viral agent. Currently, no effective treatment options are available for targeting SARS-
CoV-2 infection. Repurposing of drugs such as chloroquine, thalidomide, and leflunomide alongside convalescent plasma is
being employed as a therapeutic strategy. Clinical studies have shown that both asymptomatic and symptomatic patients can
have an extremely active immune response that is largely attributable to immune system modulations. This includes cytokine
storm syndrome (CSS), which affects the adaptive immune system, leading to exhaustion of natural killer (NK) cells and
thrombocytopenia in some cases. This review examines the interaction of SARS-CoV-2 with the host immune system and
the potential for the development of appropriate immunotherapy for the treatment of COVID-19.

Introduction

In December 2019, a distinct case of pneumonia charac-
terized by typical clinical features of viral pneumonia was
reported in Hubei province of the People’s Republic of
China. Analysis of respiratory samples revealed that a novel
coronavirus was responsible for this pneumonia, which was
later referred to as “novel coronavirus pneumonia” (NCP)
[1]. The disease was officially named “coronavirus disease
2019” (COVID-19) by the World Health Organization
(WHO). Coronaviruses are enveloped viruses with single-
stranded RNA (ssRNA) and a helical nucleocapsid, and they
are responsible for infections of the respiratory and intestinal
tracts. SARS-CoV was responsible for an outbreak of severe
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acute respiratory syndrome (SARS) in China in 2002, and
an outbreak of Middle East respiratory syndrome (MERS)
was caused by MERS-CoV in the Middle East [2-5]. Earlier
last year, another coronavirus outbreak was reported, and the
novel coronavirus was named “SARS-CoV-2” because of
its similarities to SARS-CoV [6, 7]. Currently, the molecu-
lar mechanism underlying the infectious activity of SARS-
CoV-2 is poorly understood, although structural analysis of
the virus indicates that it may infect human cells by using
angiotensin-converting enzyme 2 (ACE2) as a receptor [7].
The zoonotic spread of SARS-CoV-2 is not clear yet, but
human-to-human transmission was reported at a marketplace
where wild animals were sold, and studies have also indi-
cated that the three above-mentioned viruses are likely to
have originated from bats [6, 8, 9].

SARS-CoV-2 is a member of the subfamily Coronaviri-
nae, which includes four genera: Alphacoronavirus, Betac-
oronavirus, Gammacoronavirus, and Deltacoronavirus [10].
Some members of the first two of these genera infect humans.
SARS-CoV-2, like SARS-CoV and MERS-CoV, is a member
of the genus Betacoronavirus [11]. The SARS-CoV-2 genome
is similar to that of SARS-like bat coronaviruses, and SARS-
CoV, it relies on ACE2 as a receptor to infect human cells [12,
13]. The S (spike) protein present on the surface of the corona-
virus is responsible for recognition of the receptor. Structural
modeling of the binding of SARS-CoV-2 indicates that it is
predicted to attach with more than tenfold higher affinity than
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SARS-CoV [14]. However, the underlying mechanism of the
pathophysiology of SARS-CoV-2 is still unknown.

Clinical illness in patients infected with SARS-CoV-2
varies from a mild respiratory condition to severe acute
respiratory illness and renal failure [1]. Pneumonia is the
most prevalent clinical feature of SARS-CoV-2 infection,
although the length of time until the appearance of clinical
symptoms after infection varies from patient to patient; the
average period is 14 days [15]. Health facilities are con-
ducting diagnosis of COVID-19, and non-invasive diagnosis
involves the detection of viral RNA. Real-time PCR (qPCR)
is employed for the diagnosis of COVID-19 by detecting the
presence of viral RNA in sputum, the throat, and the respira-
tory tract. This method is highly specific, but its relatively
low sensitivity can lead to false-negative results [16]. The
white blood cell (WBC) count varies among patients with
COVID-19, and lymphopenia is frequently observed [17].
Increased levels of lactate dehydrogenase and ferritin have
also been reported. Computed tomography (CT) of the chest
region may be useful in diagnosis, yet it cannot rule out the
presence of COVID-19 [18]. For qPCR, the type of sample
and time of collection play a key role in the diagnosis. In the
early phase of infection, the virus can be detected in respira-
tory samples, whereas serum samples give negative results,
even though studies have suggested the presence of a high
viral load in the early days of infection [19]. In addition to
gqPCR, testing methodologies including RT-loop-mediated
isothermal amplification (RT-LAMP) and RT-insulated iso-
thermal PCR (RT-iiPCR) have also been reported. Com-
parative analysis focused on results of serology-based test-
ing (e.g., ELISA) and nucleic-acid-based molecular testing
(e.g., PCR) has shown that PCR has better sensitivity and
specificity. A CRISPR-based testing system was developed
by Zhang et al. for the detection of SARS-CoV-2 within
60 minutes using the SHERLOCK methodology [20]. This
technology might pave the way for developments in point-
of-care (POC) testing for COVID-19. A rapid sequencing
method has also been developed for SARS-CoV-2 that is
based on rapid construction of the transcriptomics sequenc-
ing library [21].

Currently, no effective treatment is available for COVID-
19. The purpose of this article is to review the interactions
between immune system and SARS-CoV-2 and the potential
for the development of immunotherapy for the treatment of
COVID-19 patients.

Immune system interference by SARS-CoV-2
Cytokine storm syndrome

SARS-CoV-2 infection leads to severe complications
by targeting the adaptive immune system and causing
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lymphopenia [22] (Fig. 1, Table 1). It halts the production
of antibodies and the T cell response, resulting in inflamma-
tion [23]. If inflammation is not controlled by the adaptive
immune system within 7-10 days of infection, it distorts the
adaptive immune response and results in “cytokine storm
syndrome” (CSS). Previous studies have shown that CSS
also occurs in patients with streptococcal toxic-shock-like
syndrome (STSLS) caused by Streptococcus suis and in
influenza patients [24, 25]. CSS is manifested by sustained
fever, liver dysfunction, and coagulopathy. These are obvi-
ous clinical features of COVID-19 as well [26]. CSS results
in the secretion of inflammation-specific cytokines; i.e.,
interleukin (IL)-1, IL-2, IL-8, IL-12, IL-18, tumor necro-
sis factor-alpha (TNF-a), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and interferon-gamma (IFN-
v) [27]. IL-1p and IL-8 induce the expression of IL-6 and
IL-17. The high IL-6 level has a suppressive effect on the
immune system (Fig. 1a). By inhibiting the production of
IFN-y, it has a negative effect on the production of CD8"
cytotoxic T cells [28]. As a result, COVID-19 patients are
unable to produce an adaptive immune response (antigen-
specific B cells and antibodies) [27]. An increased level of
IL-6 leads to its movement towards the liver via the blood-
stream, where it causes the induction of serum amyloid A
(SAA) [29]. SAA accumulation results in chronic inflamma-
tory diseases by producing amyloid A amyloidosis. Amyloid
fibril deposits in various organs can result in their dysfunc-
tion [30]. IL-6 in bone marrow promotes megakaryocyte
maturation, resulting in an elevated platelet count, thus
causing blood clots. Many patients with severe COVID-19
experience clotting. This might be due to disruption of the
immune system by the infection. High platelet counts are
a sign of inflammation and can thus act as a biomarker of
immune system dysregulation [26].

Exhaustion of NK and CD8* T cells

Natural killer (NK) cells are components of the innate
immune system and exhibit lymphocytic activity against
tumors and microbial infections (Table 1). Various studies
have highlighted their reciprocal relationship with neighbor-
ing macrophages, endothelial cells, and T cells [37]. The
antagonistic activity between NK cells and their neighbor-
ing cells helps to regulate NK cell activation and determine
whether NK cells are able to perform their killing func-
tion [38]. A recent study performed in China showed that
COVID-19 patients who were struggling with severe disease
symptoms (SDS) had lower NK cell counts than patients
with mild disease symptoms (MDS). These patients showed
elevated expression of NKG2A receptors, which are inhibi-
tory receptors present on the NK cell surface that gradu-
ally diminish its function, leading to disease progression
(Fig. 1b). It has been suggested that the downregulation of
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Fig. 1 Pathway illustrating four different ways by which SARS-
CoV-2 interferes with the immune system. (a) SARS-CoV-2 infec-
tion results in cytokines stress syndrome by producing a cascade of
inflammatory cytokines such as interleukin 1 (IL-1), IL-2, IL-8,
TNF-a, tumor necrosis factor-alpha, and interferon-gamma (IFN-y)
through the activation of cytokine components. IL-2 and IL-8 fur-
ther induce the expression of IL-6 and IL-17. CSS is characterized
by a high level of IL-6. IL-6 causes liver damage by producing SAA
serum amyloid. (b) SARS-CoV-2 infection causes the upregulation of
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NK cell receptors (NKG2A). High NKG2A levels halt the function of
NK cells by exhausting them (b1). Simultaneously, T cell exhaustion
occurs due to the activation of Treg cells because of CSS (b2). (c)
Increased expression of TNF-a due to CSS causes thrombocytopenia.
(d) SARS-CoV-2 infection causes ER endoplasmic reticulum stress,
which activates the unfolded protein response (UPR). Prolonged
stress results in activation of the NF-kB pathway, which causes
inflammation and ultimately leads to the pathogenesis of malignant,
metabolic, and airway diseases.

Table 1 Characteristics and clinical features of patients with immune system complications caused by SARS-CoV-2 infection

Immune-system-related compli-  Characteristics Clinical features References
cations of COVID-19
Cytokine storm High level of inflammatory cytokines IL-6: vascular leakage, coagulation [31]
TNF-a: flu-like symptoms
IFN-y: fatigue, malaise
NK cell exhaustion NK cell function lost chronic infection [32]
T cell exhaustion CD8* T cell dysfunction Loss of effector (by producing perforins and [33]
granzymes), metabolic, memory and self-
renewal function
Thrombocytopenia Extreme reduction in platelet count Liver damage (thrombosis), [34]
hemorrhagic complications
ER-stress-mediated inflammation Activation of tumor-promoting cytokines Inflammatory microenvironment, [35, 36]

ER stress caused by excessive viral protein
production and modification for viral replica-

tion and infection

cancer aggressiveness,
pathogenesis of metabolic and airway diseases

the NKG2A receptor might play a role in controlling the
disease [7].

T lymphocytes are categorized as CD8” cytotoxic lym-
phocytes (CTLs), CD4 helper (Th) cells, and regulatory
(Treg) T cells [33]. CD8" cells eliminate the virus by

producing a cascade of pathogen-killing molecules such as
IFN-y, granzymes, and perforins, while CD47 cells assist
CD8" cells in clearing viral infection more effectively
[39]. Treg cells suppress the activation of both CD8* and
helper cells and maintain the cell count balance. A study
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performed on 499 COVID-19 patients with MDS showed
reduced CD8* and CD4™ cell counts (70.56% of total MDS
patients). About 90.5% of critical-stage patients showed
an extreme reduction in their total T cell count, especially
CD8* cells [40]. Another study on COVID-19 patients also
showed a reduction in T cell counts and Treg cell upreg-
ulation due to a cytokine storm [33]. Treg cell activation
with its surface marker forkhead box P3 (FoxP3) reduces
T cell activation, and therefore, patients with COVID-19
cannot maintain long-term activation of T cells and enter
a phase of “exhaustion”. Exhausted T cells (Tex) express
programmed death-1 (PD-1) and T cell immunoglobulin &
mucindomain-3 (Tim-3); (CD366) markers and thus lose
their effector, metabolic, memory, and self-renewal function.
Targeting NKG2A receptors and Treg cell upregulation by
IL-6 and IL-10 may help in preventing T cell exhaustion.

Thrombocytopenia

Thrombocytopenia occurs when the platelet count is less
than 150,000/pul [41]. A decrease in platelet count is an
alarming sign of severe complications of the innate immune
system and in most cases results in death [42]. Thrombocy-
topenia is characterized by multiple organ dysfunction [43]
caused by megakaryocytes present in the lungs. Morpho-
logical changes in the lung capillary bed due to mechani-
cal ventilation or viral infection result in deranged throm-
bocyte defragmentation (Fig. 1c) [44]. Findings from one
study indicated that IL-3, IL-6, IL-11, and dysregulated
thrombopoietin (TPO) influence the production of mega-
karyocytes from hematopoietic cells [45]. Megakaryocyte
inhibition occurs through the action of inhibitory cytokines
such as interferon-a and transforming growth factor (TGF)-f
[13]. Thrombocytopenia leads to hemorrhagic complications
[42]. A meta-analysis of 1725 COVID-19 patients, 245 of
which were critical patients, found a 57.7% reduction in
platelet counts from the normal range in patients with SDS.
This suggests that viral infection results in endothelial dam-
age, which activates platelet production and aggregation,
leading to lung thrombosis [34]. Therefore, in addition to
cytokine storm and T cell exhaustion, thrombocytopenia can
be another separate biomarker for COVID-19 infection.

ER-stress-mediated inflammation

The endoplasmic reticulum (ER) is a site where various
essential protein modifications occur [46]. When the capac-
ity of the ER to synthesize and modify proteins reaches a
certain limit, it becomes overburdened and enters a stress
phase. ER stress activates the unfolded protein response
(UPR), which restores normal ER functioning by produc-
ing proinflammatory molecules (Fig. 1d) [47]. SARS-CoV
stresses the ER in three ways: by forming double-membrane
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vesicles (DMV), by glycosylating its structural proteins,
and by depleting the ER membrane of lipids by using them
for budding and release of virions [48, 49]. Knoops et al.
described the structure of SARS-CoV-affected ER using
high-resolution electron tomography [50]. The study sug-
gested that SARS-CoV utilizes the ER membrane for forma-
tion of DMVs. The SARS-CoV M protein (transmembrane
protein) is glycosylated, and the glycosylation can be either
O-linked or N-linked. The M protein, if not glycosylated,
can induce production of interferon alpha (IFN-o) [51]. The
three above-mentioned ER-stress-producing processes are
required for SARS-CoV replication. Prolonged ER stress
causes the UPR signaling pathway to trigger inflammation
by the NF-kB pathway, leading to excessive cytokine pro-
duction (Fig. 1d) [52]. UPR-mediated inflammation gov-
erns the pathogenesis of malignant, metabolic, and airway
diseases [35]. SARS-CoV infection imposes stress on the
ER and aggravates cancer pathogenesis in the inflamma-
tory microenvironment. Inflammation leads to CSS, which
activates tumor-promoting cytokines. Recent studies on the
association of cancer aggressiveness with COVID-19 have
shown that patients with an active tumor or undergoing anti-
cancer treatment are at greater risk of death after infection
with SARS-CoV-2 [36]. The specific reason for the high
mortality rate in cancer patients is not yet known, but dif-
ferent hypothesis-based studies and reviews emphasize that
ER stress could be one of the leading causes.

Immunotherapy and COVID-19

Currently, no effective and specific treatment targeting
SARS-CoV-2 is available. Therapeutic strategies employed
in the clinics include supportive medication (Fig. 2) [53],
the majority of which do not improve the quality of life of
patients. For instance, a combination of interferons along
with ribavirin has shown limited efficacy against COVID-
19. Glucocorticoids have also been found to be ineffective in
numerous cases. Currently, clinical trials focused on the use
of corticosteroids for the treatment of COVID-19 are being
conducted [54], although limited data are available about
their use in earlier pandemics caused by coronaviruses [55,
56]. Tocilizumab, an antagonist of interleukin-6, together
with sarilumab, is being tested in clinical trials for the treat-
ment of COVID-19 [57, 58]. Alternatively, CytoSorb, an
adjunctive therapeutic molecule that absorbs a variety of
cytokines, leading to a reduction in their concentration, has
been shown to improve the immunopathological condition
of patients [54]. A COVID-19 patient has been success-
fully treated with the immunomodulator thalidomide [57].
A combination of azithromycin and the antimalarial drug
hydroxychloroquine has shown potential for the treatment
of COVID-19 in a small non-randomized clinical trial [59].
However, limited data are available on the modulation of
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Convalescent plasma therapy
- Antibody based treatment for SARS-CoV-2

Ribavirin
- Inhibits RNA-dependent RNA polymerase

Therapeutic options currently being

utilized for treating CoVID-19

Anakinra
- Inhibits IL-1 receptor

Teicoplanin
- Blocks cathepsin L in the human body

Remdesivir
- Inhibits RNA-dependent RNA polymerase

Chloroquine
- Disrupt viral fusion via increase in
endosomal pH

Arbldol
- Blocks membrane mediated fusion of
viral envelope

Leflunomide
- Disrupts viral replication

Thalidomide
- Decreases cytokine storm

Favipiravir
- Inhibits RNA-dependent RNA polymerase

Interferon-a 2A
- Suppresses viral exocytosis

Tocilizumab
- Disrupts IL-6 signaling cascades

Camostat mesylate
- Inhibits viral cell entry

Lopinavir
- Blacks 3-chymotrypsin

Fig.2 Currently employed therapeutic strategies for treatment of COVID-19

the immune system via hydroxychloroquine for targeting
COVID-19 [60].

SARS-CoV-2 modulates levels of both T cells and B
cells, and this characteristic can be exploited to develop
therapeutic strategies targeting the infectious agent. Clinical
evaluation of vaccines against SARS-CoV in experimental
animal models has indicated the presence of immunopatho-
logical modulation linked with Th2-cell-controlled eosin-
ophil penetration [61, 62]. An experiment using a mouse
model showed increased immunopathology instead of pro-
tection [63]. The development of vaccines based on their
interaction with T cells requires a comparative evaluation
of the molecular mechanisms underlying protective T cell
activation and harmful T cell production [64].

A B cell response was observed in COVID-19 patients
approximately 1 week after the onset of symptoms, and the
nucleocapsid (N) protein is the first target of T cells [65],
with the production of antibodies against S protein imme-
diately after the onset of symptoms [66]. Antibody produc-
tion can also be detected earlier in COVID-19 patients,
but many patients do not develop persistent antibodies,
and the possibility of reinfection in such patients remains
unknown. The administration of antibodies appears to be
an effective treatment for COVID-19 patients, as has been
shown in cases of infection with both SARS-CoV-2 and
SARS-CoV [67-71]. The molecular mechanism of protec-
tion against the virus has not been elucidated in humans.
In SARS-CoV infection, neutralizing antibodies target the

S protein, which binds to the ACE2 receptor on human
cells [72]. Monoclonal antibodies targeting SARS-CoV
can also bind to SARS-CoV-2 but with less affinity due
to differences in target regions of the antibodies [73, 74].
Furthermore, cross-neutralization of SARS-CoV-2 by a
mouse anti-SARS-CoV antiserum has been described [75].

Convalescent plasma has been used as a source of poly-
clonal antibodies against SARS-CoV-2 for the treatment of
COVIDI19 patients [76]. Therapeutic strategies for devel-
oping monoclonal antibodies to neutralize SARS-CoV-2
have included phage library display and immunization
of experimental mice [77, 78]. The absence of antibody-
escape mechanisms, i. e., glycan coating of the receptor-
attachment site suggests that if SARS-CoV-2 behaves in a
manner similar to SARS-CoV, development of monoclonal
antibodies for the treatment of infection will be success-
ful [54, 79]. Currently, effective commercial monoclonal
antibodies for the treatment of SARS-CoV-2 infection
are not available, despite significant advancements in the
development of therapeutic monoclonal antibodies for
the treatment of COVID-19 using passive immunization
approaches. Although the commercial-scale production
of monoclonal antibodies for targeting SARS-CoV-2 is
not cost- and time-efficient, designing an optimized and
tailored antibody production platform can play a vital role
in this regard. Further studies on structural and immuno-
pathological data on coronaviruses can help in the treat-
ment of SARS-CoV-2 using immunotherapy approaches.
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Conclusion

COVID-19 has caused massive destruction worldwide, and
nations are still striving to get back to normal. Scientists
and physicians are working hard to find effective treatments,
although robust diagnosis is still a concern because of ambi-
guity in the detection of viral infection. This review was an
effort to highlight important possible ways by which SARS-
CoV-2 interferes with the immune system and immune-
based drugs used in different countries. CSS, thrombocy-
topenia, and T cell exhaustion provide insight into how
COVID-19 interferes with the immune system, and these
aspects can also help in the discovery of biomarkers for
diagnosis of COVID-19. Recent studies have reported CSS
to be a major factor in this disease, so targeting different
aspects of CSS might help in designing drugs that mainly
focus on the immune system. Many immune-system-based
drugs have already been designed and a few of them are in
clinical trials. These drugs have shown promising results,
and immunotherapy could thus prove to be the most impor-
tant future treatment of COVID-19. Thrombocytopenia is a
very reliable indicator of viral infection. Also, we can look
forward to integrating ER stress as a biomarker with assay-
based techniques to measure ER stress and its role in disease
pathogenesis.
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